
On the Computational Power of Biochemistry

Luca Cardelli1 and Gianluigi Zavattaro2

1 Microsoft Research, Cambridge, UK
2 Dip. Scienze dell’Informazione, Università di Bologna, Italy

Abstract. We explore the computational power of biochemistry with
respect to basic chemistry, identifying complexation as the basic mech-
anism that distinguishes the former from the latter. We use two process
algebras, the Chemical Ground Form (CGF) which is equivalent to basic
chemistry, and the Biochemical Ground Form (BGF) which is a minimal-
istic extension of CGF with primitives for complexation. We characterize
an expressiveness gap: CGF is not Turing complete while BGF supports
a finite precise encoding of Random Access Machines, a well-known Tur-
ing powerful formalism.

1 Introduction

In this paper we introduce a minimal process algebra that aims to capture the es-
sential primitives of biochemistry. Biochemistry is obviously based on chemistry,
and in principle one can always express the behavior of a biochemical system by
a collection of chemical reactions. But there is a major practical problem with
that approach: the collection of reactions for virtually all biochemical systems is
an infinite one. For example, just to express the chemical reactions involved in
linear polymerization, we need to have a different chemical species for each length
n of polymer Pn, with reactions to grow the polymer: Pn + M → Pn+1. While
each polymer is finite, the set of possible polymerization reactions is infinite. Na-
ture adopts a more modular solution: the act of joining two molecules is called
complexation, and polymers are made by iteratively complexing monomers. Each
monomer obeys a finite simple set of rules that leads to the formation of polymers
of any length; therefore, it seems that there should be a finite way of describing
such systems. One can start by writing pseudo-reactions like P + M → P :M ,
where P : M is meant to represent a P (olymer) molecule attached to an ex-
tra M(onomer), yielding a longer polymer. However, there are in general many
possible ways (that is, many different patches on the surface of a molecule) by
which one molecule can exclusively form a complex with other molecules, and
soon one needs to describe the interface of each molecule. This situation, while
not commonly found in basic chemistry, is particularly acute in biochemistry,
where virtually all reactions are governed by enzymes and molecular machines,
which are themselves often built by complexation, and which usually operate by
complexing with their reactants.

The intuitive idea of a molecule as a stateful entity with a connectivity in-
terface is now common. Notations have emerged from biology that use such



an idea to describe large biochemical systems [9, 8]. Many formalized and com-
puterized approaches are currently being developed, including: practical tools,
where molecules are drawn as boxes with connecting lines [6]; graph-rewriting
and term-rewriting systems where a molecular complex is represented as a graph
or term, and a reaction is a graph or term rewrite [7, 5]; coding techniques in
process algebra, where complexation can be expressed via some advanced fea-
tures [16]; and finally, specialized process algebras where molecular interfaces
and complexation are taken as primitive [15, 4]. All these approaches aim to find
a descriptive framework that goes beyond simple chemical reactions, and that
can be used to represent common biochemical situations finitely and modularly.

The aim of this paper is then to investigate the computational boundary
between chemistry and biochemistry. That is: what is the intrinsic power of
complexation that gives it the ability to represent finitely what would otherwise
have an infinite representation? To clarify this issue we study two formal systems,
which for easy comparison are both based on the notion of molecules as state-
ful entities with an interface. One system, the Chemical Ground Form (CGF)
has been presented in [3]: it is equivalent to basic chemistry, and it does not
include complexation. The other system, the Biochemical Ground Form (BGF)
is proposed in this paper as a minimalistic extension of CGF with complexation.
As already mentioned, many richer formalisms can represent complexation too,
but they also include mechanisms that have no direct biological implementa-
tion. Our proposal is minimalistic in the following sense: it adds only two basic
actions called association and dissociation. Association allows two molecules to
form a complex, dissociation allows them to subsequently break such a complex.
Between an association event involving two molecules and their subsequent disso-
ciation, the two molecules can still freely interact with other molecules or among
themselves. In other more expressive formalisms, see for instance the so-called
exchange reactions in [5], it is possible to specify events that change the internal
state of one molecule only if it is complexed with another one having a particular
state.

The main contribution of this paper is the formalization of the following
expressiveness gap between chemistry and biochemistry: the CGF is not Tur-
ing complete while its minimalistic extension BGF is already Turing complete.
The results on the CGF are obtained by resorting to papers on the compu-
tational power of basic discrete chemistry. In particular, we refer to works by
Magnasco [11] and Soloveichik et al. [17] to show that only infinite CGF repre-
sentations could be sufficiently expressive to precisely model any Turing powerful
formalism. On the contrary, we show (as an original result) a finite BGF repre-
sentation of Random Access Machines [14], a well known register based Turing
powerful formalism.

The paper is structured as follows. In Section 2 we give the definition of the
CGF and we discuss its computational power. In Section 3 we introduce the
BGF, the new notation that enriches the CGF with complexation. In Section 4
we prove that the new process algebra is Turing complete, and finally in Section 5
we give some concluding remarks.



2 Chemical Ground Form

In this section we give the definition of the Chemical Ground Form (CGF): the
notation for the representation of chemical systems presented in [3]. We first
informally recall the notation, then we give the formal syntax and semantics.

In the CGF each species has an associated definition describing the possible
actions for the molecules of that species. Each action π(r) has an associated
stochastic rate r (a positive real number) which quantifies the expected execution
time for the action π.

There are three kinds of actions. Action τ(r) indicates the possibility for a
molecule to be engaged in a unary reaction. For instance, the definition A =
τ(r); (B|C) is used to specify the possibility for one molecule of species A to be
engaged in a unary reaction that produces two molecules, one of species B and
one of species C (the operator “|” is borrowed from process algebras such as
CCS [13], where it represents parallel composition, and corresponds here to the
chemical “+”). Binary reactions have two reactants. The two reactants perform
two complementary actions ?a(r) and !a(r), where a is a name used to identify
the reaction; both the name a and the rate r must match for the reaction to
be enabled. For instance, given the definitions A =?a(r);C and B =!a(r);D,
we have that two molecules of species A and B can be engaged in a binary
reaction that produces two molecules, one of species C and one of species D.
If the molecules of one species can be engaged in several reactions, then the
corresponding definition admits a choice among several actions. The syntax of
choice is as follows: A = τ(r);B⊕?a(r′);C, meaning that molecules of species A
can be engaged in either a unary reaction that produces a molecule of species B,
or in a binary reaction with another molecule able to execute the complementary
action !a(r′). In the second case, the molecule of species A contributes to the
reaction by producing a new molecule of species C.

We now present the formal definition of the syntax of the CGF.

Definition 1 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged over
by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).
The syntax of CGF is as follows (where the big

∣∣ separates syntactic alternatives
while the small | denotes parallel composition):

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;P ⊕M Molecule

P ::= 0
∣∣ X|P Solution

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output actions
CGF ::= (E,P ) Reagents and initial Solution

Given a CGF (E,P ), we assume that for every variable X occurring in P or E,
there is exactly one definition X = M in E.

In the following, trailing 0 are usually left implicit, and we use | also as
an operator over the syntax: if P and P ′ are 0-terminated lists of variables,



according to the syntax above, then P |P ′ means appending the two lists into a
single 0-terminated list. Therefore, if P is a solution, then 0|P , P |0, and P are
syntactically equal.

We consider the discrete state semantics for the CGF defined in [3] in terms
of Continuous Time Markov Chains (CTMCs). The states of the CTMCs are
solutions in normal form denoted with P †: for a solution P , we indicate with
P † the normalized form of P where the variables are sorted in lexicographical
order (with 0 at the end), possibly with repetitions. The CTMC of a chemical
ground form is obtained in two steps: we first define the Labeled Transition
Graph (LTG) of a chemical ground form, then we show how to extract a CTMC
from the labeled transition graph.

In order to define the LTG of a chemical ground form we need to introduce
the following notation. Let E.X be the molecule defined by X in E, and M.i be
the i-th summand in a molecule of the form M = π1;P1 ⊕ · · · ⊕ πn;Pn. Given
a solution in normal form P †, with P †.m we denote the m-th variable in P †,
with P †\(m1, · · · ,mn) we denote the solution obtained by removing from P † the
mi-th molecule for each i ∈ {1, · · · , n}.

A Labeled Transition Graph (LTG) is a set of quadruples 〈l : S† r→ T †〉 where
the transition labels l are either of the form {m.X.i} or {m.X.i, n.Y.j}, where
m,n, i, j are positive integers, X,Y are species names, m.X.i are ordered triples
and {· · · , · · ·} are unordered pairs.

Definition 2 (Labeled Transition Graph (LTG) of a Chemical Ground
Form). Given the Chemical Ground Form (E,P ), we define Next(E,P ) as the
set containing the following kinds of labeled transitions:

Unary: 〈{m.X.i} : P † r→ T †〉 such that P †.m = X and E.X.i = τ(r);Q and
T = (P †\m)|Q;

Binary: 〈{m.X.i, n.Y.j} : P † r→ T †〉 such that P †.m = X and P †.n = Y and
m 6= n and E.X.i =?a(r);Q and E.Y.j =!a(r);R and T = (P †\m,n)|Q|R.

The Labeled Transition Graph of (E,P ) is defined as follows:

LTG(E,P ) =
⋃

n Ψn

where Ψ0 = Next(E,P ) and Ψn+1 =
⋃
{Next(E,Q) | Q is a state of Ψn}

We now define how to extract from an LTG the corresponding CTMC.

Definition 3 (Continuous Time Markov Chain of an LTG). If Ψ is an
LTG, then |Ψ | is its CTMC, defined as the set of the triples P r7→ Q with P 6= Q,
obtained by summing the rates of all the transitions in Ψ that have the same
source and target state: |Ψ | = {P r7→ Q s.t. ∃〈l : P r→ Q〉 ∈ Ψ with P 6=
Q, and r =

∑
ri s.t. 〈li : P ri→ Q〉 ∈ Ψ}.

We conclude this section by discussing the expressive power of the CGF.
First of all, we recall the equivalence result proved in [3] between the CGF and
discrete chemistry, that is, the traditional stochastic model of chemical kinetics



that describes interactions among integer numbers of molecules as CTMCs [12].
More precisely, it is proved that every discrete chemical model (with unary and
binary reactions) has a semantically equivalent CGF, and vice versa. By semantic
equivalence between a chemical discrete model and a CGF, we mean that the
underlying CTMCs are isomorphic.

In [11], Magnasco shows how to represent in discrete chemistry the computa-
tional model of electronic digital computers, based on finite logical circuits with
an unbounded memory. Using the translation in [3], we can obtain an equivalent
model also in CGF. This is not sufficient to prove that CGF is Turing complete.
In fact, the technique proposed by Magnasco requires the exploitation of new
species every time a new memory location is needed during the computation.
Thus, the CGF system corresponding to a computable function requiring un-
bounded memory should include an unbounded number of species, thus also an
unbounded number of definitions. This is not admitted in the CGF syntax.

The question about Turing completeness of the CGF can be answered in the
light of more recent results proved in [17] by Soloveichik et al. In fact, they prove
that discrete chemistry is not expressive enough to precisely model any Turing
complete formalism, because the problem of deciding whether a certain molecule
could be produced in a given chemical system is decidable. Therefore, we can
conclude that also the CGF is not Turing complete because, by contraposition, if
the CGF were Turing complete, the translation from CGF to discrete chemistry
in [3] would allow one to model in discrete chemistry a Turing complete formalism
with a finite number of species. It is also possible to derive this result more
directly by a connection between the CGF and decidable properties of Petri
nets as shown, e.g., in [18].

3 Biochemical Ground Form

In this section we present a minimalistic process algebra for biochemistry, ob-
tained by extending the CGF with association and dissociation. We call the
new process algebra biochemical ground form (BGF). Following a similar pro-
posal outlined in [2], we consider two additional pairs of complementary actions,
&?a(r),&!a(r) for association and %?a(r),%!a(r) for dissociation. Before present-
ing the formal syntax and semantics of the new actions, we introduce them
informally by means of examples. To simplify the notation, in the examples we
abstract away from the stochastic rates, e.g., we write &?a instead of &?a(r).

Example 1 (Linearly growing polymer). Each complexation event involves ex-
actly two partners. We imagine that the partners have two complementary sur-
face patches that can interlock. If c represents a surface shape (say, a paraboloid),
then !c indicates one of the two patches (say, the convex one) and ?c indicates the
complementary patch (the concave one). Then, &!c is the action that presents
the convex patch, and &?c is the action that presents the concave patch. When
two such association actions meet, an actual complexation event can take place,
joining the two complementary surfaces.



A linearly growing polymer could be represented as follows, using a seed S
and a collection of equal monomers M . The seed starts the chain by present-
ing a concave patch ?c: this is our initial, zero-length, polymer. Each monomer
presents a convex patch !c, which can bind with an existing polymer on the
complementary concave patch. After (and only after) such a binding, a bound
monomer M ′ presents another concave patch ?c, so that the polymer can keep
growing. Both the seed and each monomer can have further behavior, S′ and
M ′′.

S = &?c;S′

M = &!c;M ′

M ′ = &?c;M ′′

Each complexation event creates a unique bond between exactly the two molecules
that are joined to each other. This bond needs to be represented somehow, to
make sure that a molecule can bind with only one other molecule at a time on
any given patch. We represent such a bond as a unique key k that is shared by
the two complexed molecules (think of k as a fresh number, or as a fresh channel
in π-calculus [13]). Such unique keys, and related information, are collected in
the association history of each molecule. So, the first interaction of an S with an
M , which initially have empty association histories (0), proceeds as follows:

S0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉

Interaction with a second monomer then introduces a second fresh key in the
histories:

S0 | M0 | M0 → S′〈?c,k1〉 | M
′
〈!c,k1〉 | M0 → S′〈?c,k1〉 | M

′′
〈?c,k2〉::〈!c,k1〉 | M

′
〈!c,k2〉

This mechanism of creation of fresh association keys is repeated every time a
new association is created between a monomer and the subsequent one.

It is worth observing that, in any reachable configuration, we can reconstruct
from the association histories who is bound to whom, and on what surface the
bond was formed. Note that the description of the system is finite (3 reagents,
S, M , M ′), but that polymers of any length can be assembled (assuming the
initial availability of a corresponding amount of monomers).

Example 2 (Branching polymer). After complexation, a molecule is still free to
perform additional complexations or other interactions. That is, complexation
places no restrictions on the behavior of the original molecules, except for the fact
that new complexations cannot occur on surfaces that are already occupied, and
that decomplexations must happen consistently with prior complexations (as we
discuss shortly). To illustrate this freedom, let us modify the previous example
and allow each bound monomer to offer a seed for growing a new polymer branch:

S = &?c;S′

M = &!c;M ′

M ′ = &?c;M ′′

M ′′ = &?d;M ′′′

N = &!d;N ′

N ′ = &?c;N ′′



Where an M ′′ can bind through the interface d to an adaptor molecule N , which
then offers another c surface for branching.

Example 3 (Actin-like polymer). Decomplexation is the inverse of complexation,
that is, two formerly joined molecules can dissociate. We indicate by %!c the
attempt to dissociate from the convex side, and %?c the attempt to dissociate
from the concave side. When two complexed molecules attempt complementary
dissociations, an actual decomplexation event can take place. To illustrate this
situation, we describe a different kind of linear polymer: one that can grow only
at one end, and can shrink only at the other end. There are four molecular states
for each monomer: Mf (free monomer), M l (monomer bound on the left), Mr

(monomer bound on the right), and M b (monomer bound on both sides). Each
monomer has a left convex surface and a complementary right concave surface. A
polymer should associate (grow) only on the right and should dissociate (shrink)
only on the left.

Mf = &!c;M l ⊕&?c;Mr

M l = %!c;Mf ⊕&?c;M b

Mr = %?c;Mf

M b = %!c;Mr

A free monomer Mf can either associate on the left convex surface and become
bound on the left, or associate on the right concave surface and become bound
on the right. A monomer M l bound only on the left can either dissociate on the
left (if allowed by its partner, which must in fact be an Mr in this case) and
return free, or associate on the right (with an Mf ) and become bound on both
sides. A monomer Mr bound only on the right can only dissociate on the right:
that is, a polymer cannot grow on the left. A monomer M b bound on both sides
can only dissociate on the left (with an Mr): that is, a polymer cannot shrink
on the right or break in the middle. These rules cover also the base cases when
a polymer of length 2 initially forms or finally dissolves.

A decomplexation should succeed only between a pair of molecules that were
actually complexed in their past history, and this can be checked by inspecting
the unique keys introduced during complexation. For example let us consider
two Mf molecules that complex and then immediately decomplex:

Mf
0 | M

f
0 →M l

〈!c,k〉|M
r
〈?c,k〉 →Mf

0 |M
f
0

The second transition is allowed to happen because M l offers %!c, Mr offers
the complementary %?c, and the same key k appears in both association his-
tories on the c interface (and with the correct convexity). As a consequence of
decomplexation, the keys are removed from the histories.

Example 4 (Unbounded linearly growing and shrinking polymer). Recursive def-
initions of the species behavior allows us to specify systems in which an un-
bounded number of monomers can be created. We use this ability to specify a
linearly growing polymer started by a seed, that can also shrink removing the



last associated monomer, and for which there is no fixed maximal length. In or-
der to produce an unbounded number of monomer we consider a factory species
able to continuosly produce monomers:

Fact = τ ; (Mf |Fact)
S = &?c;S′

S′ = %?c;S
Mf = &!c;M l

M l = %!c;Mf ⊕&?c;M b

M b = %?c;M l

It is easy to see that each seed molecule of species S has the ability to start
the creation of a polymer that can grow and shrink along one direction without
any fixed bound to its maximal length. We will exploit this technique in the
proof of Turing completeness of the biochemical ground form in order to model
registers, i.e., data structures on which increment, decrement and test for zero
operations can be executed. The intuition is that increments are modeled by
means of the creation and association of a new monomer, decrements by means
of the elimination of the last associated monomer, and test for zero simply by
checking the availability of a molecule of species S (the seed becomes of species
S′ when associated to a monomer).

Almost all new ingredients of the BGF have been presented in the exam-
ples above. The unique additional aspect that requires discussion deals with
molecule splitting, that is the possibility for one reactant to produce more than
one molecule. We allow only molecules without complexations (i.e. with an empty
association history) to split. In fact, if we admit the splitting of complexed
molecules, we also need to extend the language to allow for the specification of
the distribution of the associations among the produced molecules: this is pos-
sible but somewhat cumbersome. The restriction to splitting only uncomplexed
molecules simplifies the notation without limiting the computational power of
the calculus.

The complete syntax of the BGF is defined as follows.

Definition 4 (Biochemical Ground Form (BGF)). Consider the following
denumerable sets: Species ranged over by variables X, Y , X1, X2, · · ·, Channels
ranged over by a, b, · · ·, a totally ordered set of Association keys ranged over by
k, k′, · · ·. Moreover, let r, s, · · · be rates (i.e. positive real numbers).



The syntax of BGF is as follows:

E ::= 0
∣∣ X=M,E Reagents

M ::= 0
∣∣ π;P ⊕M Molecule

P ::= 0
∣∣ X|P Product

π ::= τ(r)
∣∣ ?a(r)

∣∣ !a(r) Internal, Input, Output actions∣∣ &?a(r)

∣∣ &!a(r) Association actions∣∣ %?a(r)

∣∣ %!a(r) Dissociation actions
S ::= 0

∣∣ XH |S Solution
H ::= 0

∣∣ 〈?a, k〉 :: H
∣∣ 〈!a, k〉 :: H Association history

BGF ::= (E,S) Reagents and initial Solution

Given a BGF (E,S), we assume that for every variable X occurring in P or
E, there is exactly one definition X = M in E. Moreover, we assume that an
association key k either does not occur in S or it occurs in exactly two associa-
tions 〈?a, k〉 and 〈!a, k〉 (for some channel a) stored in the history of two distinct
molecules.1

In the following, trailing 0 are usually omitted also in association histories: for
instance, we denote 〈?a, k〉 :: 0 simply with 〈?a, k〉. Following this simplification,
we can use a product P to specify a corresponding solution S, including the same
molecules as in P , each of which having an empty association history. Moreover,
we consider :: also as an operator over the syntax of association histories: for
instance, if H and H ′ are 0-terminated association histories, according to the
syntax above, then H :: H ′ means appending the two lists into a single 0-
terminated list. Therefore, if H is an association history, then 0 :: H, H :: 0,
and H are syntactically equal.

The semantics of BGF is defined, analogously to the semantics of CGF,
in terms of a CTMC obtained in two steps, first the definition of a Labeled
Transition Graph (LTG), then the extraction of a CTMC from the LTG. The
second step is obtained in the same way as described in Definition 3. Thus we
simply have to introduce a new definition for the LTG.

Due to the presence of the association histories, we need to introduce a new
normal form for solutions.

Definition 5 (Normalized solution). For a solution S of a well formed BGF,
we indicate with S† the normalized form of S obtained by

1. sorting the molecules first lexicographically according to their species name,
2. then sorting the molecules of the same species according to their initial key

(i.e. the key of the first association in the history) putting the molecules
without an initial key (i.e. with an empty history) before those with an initial
key,

1 In BGF, we do not admit self-complexation, i.e., the possibility for one molecule to
associate with itself. Still, it is possible for complexed molecules to form cycles; e.g.,
circular polymers.



3. and finally, if there are pairs of molecules of the same species with the same
initial key k, put the molecule with association 〈?a, k〉 before the molecule
with association 〈!a, k〉.

Note that normalized solutions are well defined because for each pair of syn-
tactically different molecules XH and X ′

H′ occurring in a well formed BGF, it
defines whether XH should precede X ′

H′ , or the vice versa. In fact, the unique
case in which this is not defined is when they are of the same species and they
both have an empty association history, thus they are syntactically identical.

On normalized solutions S†, we use the usual notation: S†.m denotes the
m-th molecule in S†, with S†\(m1, · · · ,mn) we denote the solution obtained by
removing from S† the mi-th molecule for each i ∈ {1, · · · , n}. We use also the
following notation on association histories: with H \ 〈?a, k〉 (resp. H \ 〈!a, k〉) we
denote the history obtained by removing from H the association 〈?a, k〉 (resp,
〈!a, k〉).

We now describe how to produce a Labeled Transition Graph from the Bio-
chemical Ground Form (E,S). As in the previous section, Next(E,S) is a set of
quadruples 〈l : S† r→ T †〉.

Definition 6 (LTG of a BGF). Given a product P , with P0 we denote the
solution obtained adding the empty association history 0 to the molecules in P .
Given the BGF (E,S), we define Next(E,S) as the set containing the following
kinds of labeled transitions:

Unary: 〈{m.X.i} : S† r→ T †〉 such that S†.m = XH and E.X.i = τ(r);P and
T = (S†\m)|V such that
– if H = 0 then V = P0,
– if H 6= 0 then P = X ′ and V = X ′

H ;

Binary: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and S†.n = YH′ and
m 6= n and E.X.i =?a(r);P and E.Y.j =!a(r);Q and T = (S†\m,n)|V such
that
– if H = 0 and H ′ = 0 then V = P0|Q0,
– if H = 0 and H ′ 6= 0 then Q = Y ′ and V = P0|Y ′H′ ,
– if H 6= 0 and H ′ = 0 then P = X ′ and V = X ′

H |Q0,
– if H 6= 0 and H ′ 6= 0 then P = X ′ and Q = Y ′ and V = X ′

H |Y ′H′ ;

Complexation: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and S†.n =
YH′ and m 6= n and E.X.i = &?a(r);X ′ and E.Y.j = &!a(r);Y ′ and
for each k′ we have that 〈?a, k′〉 6∈ H and 〈!a, k′〉 6∈ H ′ and T = (S† \
m,n)|X ′

〈?a,k〉::H |Y
′
〈!a,k〉::H where k is the smallest association key among those

that do not appear in the association histories in S†;
Decomplexation: 〈{m.X.i, n.Y.j} : S† r→ T †〉 such that S†.m = XH and

S†.n = YH′ and m 6= n and E.X.i = %?a(r);X ′ and E.Y.j = %!a(r);Y ′ and
there exists k s.t. 〈?a, k〉 ∈ H and 〈!a, k〉 ∈ H ′ and T = (S†\m,n)|X ′

H\〈?a,k〉|
Y ′H′\〈!a,k〉.



The Labeled Transition Graph of (E,S) is defined as follows:

LTG(E,S) =
⋃

n Ψn

where Ψ0 = Next(E,S) and Ψn+1 =
⋃
{Next(E,Q) | Q is a state of Ψn}

It is easy to see that the assumption at the end of the Definition 4, i.e. that
an association key k either does not occur in the solution or it occurs in exactly
two associations 〈?a, k〉 and 〈!a, k〉 (for some channel a) stored in the history
of two distinct molecules, is preserved by the labeled transition system. In fact,
the unique rules able to modify the association histories (the last two items in
the Definition 6), removes both instances of an association key or create two
instances of a new key, respectively.

The restriction, that we already informally discussed, that complexed molecules
cannot split follows from the fact that splitting is possible only in the first two
items of the Definition 6, and only in case the association history of the splitting
molecule is empty.

Finally, we define the semantics of a BGF (E,S) as |LTG(E,S)|, that is the
CTMC obtained from the labeled transition graph LTG(E,S) according to the
technique presented in Definition 3.

4 Turing completeness of BGF

We prove that Biochemical Ground Form is Turing complete. This result allows
us to conclude that the association and dissociation actions cannot be encoded
in the CGF, because the addition of these mechanisms makes BGF strictly more
expressive.

In order to prove that BGF is Turing complete, we show how to model
Random Access Machines (RAMs) [14], a well known Turing powerful formalism
based on registers containing nonnegative natural numbers. The registers are
used by a program, that is a set of indexed instructions Ii of two possible kinds:

– i : Inc(rj) that increments the register rj and then moves to the execution
of the instruction with index i+ 1 and

– i : DecJump(rj , s) that attempts to decrement the register rj ; if the regis-
ter does not hold 0 then the register is actually decremented and the next
instruction is the one with index i+ 1, otherwise the next instruction is the
one with index s.

We assume the existence of a special instruction Ihalt corresponding to program
termination.

In our encoding of RAMs, we use a simplified notation for BGF defini-
tions in which actions can be written in sequence. For instance the definition
A = π1;π2;C is a shorthand for the two definitions A = π1;B and B = π2;C.
Moreover, we do not show the stochastic rates (r) of the actions as they are
not relevant: the execution of a RAM encoding proceeds deterministically (there
are no probabilistic choices governed by the rates) and the speed of the RAM
simulation is not important.



The encoding considers one species Ii for each instruction Ii. The behavior of
the molecules of species Ii is to update the registers according to the correspond-
ing instruction Ii, and then produce one molecule of species Ij corresponding to
the subsequent instruction to be executed.

Formally, the species corresponding to the instructions are defined as follows:

Ii =

 !incj ; ?ack; Ii+1 if Ii = i : Inc(rj)
!decj ; ?ack; Ii+1 ⊕ !zeroj ; Is if Ii = i : DecJump(rj , s)
0 if Ii = Ihalt

In Figure 1 we graphically depict the above definitions using a graph-like
notation: each species is represented by one node, and a transition labeled with
an action π represents the possibility for the molecules of the source species to
perform the action π producing one molecule of the target species. In case of

Fig. 1. Encoding of RAM instructions.

an increment instruction, a request for increment incj is considered, then an ac-
knowledgment is required to have confirmation that the increment actually took
place, and finally the next instruction is activated. In case of a decrement, either
a decrement or a test for emptiness can take place: in the first case an acknowl-
edgment is required before activating the next instruction; in the second case
the jump is executed. In case of the terminating instruction, the corresponding
molecule simply does nothing.

Each register rj is modeled by a polymer similar to those described in the
Example 4. In this case the seed is of species Zj and the monomers are of species
Rj . The number of monomers in the polymer coincides with the register content,
namely, when the register holds the number l the polymer is composed of exactly
l monomers. As it is not possible to know a priori the number of monomers
necessary during the computation, we consider a factory, that is, a molecule of
species RF j which is responsible for the the generation of the molecules of species



Rj whenever they are needed. The last associated molecule in the polymer is the
only one able to interact with the instruction molecules: if it is of species Zj the
active action is ?zeroj , if it is of species Rj the active action is ?decj . The effect
of the execution of ?decj is the dissociation of the last associated molecule from
the polymer.

The formal definition of the species used to model registers is as follows:

Zj = ?zeroj ;Zj ⊕ &?linkj ; %?linkj ;Zj

RF j = ?incj ;
(
RF j |(&!linkj ; !ack;Rj)

)
Rj = (&?linkj ; %?linkj ;Rj

!linkj
) ⊕ (?decj ; %!linkj ; !ack; 0)

In Figure 2 we graphically depict the encoding of registers. In this case we also
have to represent the splitting of the molecules of species RF j when performing
the action ?incj : the transition enters an intermediary splitting state represented
with a bar, from which we have one outgoing transition for each of the produced
molecules.

rj with content n

Zj Rj Rj RjRj

n  instances of Rj

Zj

?zeroj

&?lj
%?lj

?incj

Rj

!ackj

&!lj

&?lj
%?lj?decj%!lj!ack

RFj

Fig. 2. Encoding of RAM registers.

The remainder of this section is devoted to the formal proof of correctness of
this RAM encoding. We use the following notation. Given a RAM with registers
r1, · · · , rn, we denote with (Ii, r1 = l1, · · · , rn = ln) 7→ (Ij , r1 = l′1, · · · , rn =
l′n) its possible steps of computation. Namely, if the RAM is going to execute



instruction Ii, and the register contents are l1, · · · , ln, respectively, then the next
instruction is Ij and the new register contents are l′1, · · · , l′n, respectively.

In the following we need to treat as equivalent some syntactically different
solutions which represent the same biological system. For instance, the two so-
lutions

Z1
〈?link1,1〉 | R

1
〈?link1,4〉::〈!link1,1〉 | R

1
〈!link1,4〉

Z1
〈?link1,2〉 | R

1
〈?link1,3〉::〈!link1,2〉 | R

1
〈!link1,3〉

both denote the polymer representing the register r1 with content 2, even if they
differ in their association keys. Formally, we have that two solutions S and T
are equivalent if there exists an injective renaming ρ for the association keys in
S such that (S[ρ])† = T †, where S[ρ] denotes the result of the application of
the injective renaming to the solution S. In the example above, the injective
renaming used to prove that the two solutions are equivalent is {1 7→ 2, 4 7→ 3}.

We denote with [[(Ii, r1 = l1, · · · , rm = lm)]] the set of equivalent solutions
which represent the RAM ready to execute the instruction Ii and in which the
registers r1, · · · , rm have contents l1, · · · , lm, respectively. Formally, [[(Ii, r1 =
l1, · · · , rm = lm)]] is the set of solutions equivalent to:

Ii |
RF 1 | Z1

〈?link1,k1
1〉
| R1

〈?link1,k2
1〉::〈!link1,k1

1〉
| · · · | R1

〈!link1,k
l1
1 〉
|

· · ·
RFm | Zm

〈?linkm,k1
m〉
| Rm

〈?linkm,k2
m〉::〈!linkm,k1

m〉
| · · · | Rm

〈!linkm,klm
m 〉

Given a RAM denoted with R, having instructions I1, · · · , In and registers
r1, · · · , rm, we use ER to denote the definitions of the species I1, · · ·, In, Z1,
· · ·, Zm, RF 1, · · ·, RFm, and R1, · · ·, Rm as defined above. Thus, given one of
the possible configurations (Ii, r1 = l1, · · · , rm = lm) of R, we model it with the
BGF (ER, S) where S is any of the solutions in [[(Ii, r1 = l1, · · · , rm = lm)]].

We are now ready to prove the correctness result.

Theorem 1. Let R be a RAM. Given one of its possible configurations (Ii, r1 =
l1, · · · , rm = lm) and a solution S0 ∈ [[(Ii, r1 = l1, · · · , rm = lm)]], we have that:

– either Ii = Ihalt and Next(ER, S) is empty;
– or (Ii, r1 = l1, · · · , rm = lm) 7→ (Ij , r1 = l′1, · · · , rm = l′m) and there exist
S1, · · · , Sz such that for every 0 ≤ x < z we have that Next(ER, S†x) contains
only one transition which has S†x+1 as its target state, and moreover Sz ∈
[[(Ij , r1 = l′1, · · · , rm = l′m)]].

Proof (outline). The proof is by case analysis on the following four possible cases:
Ii = Ihalt, Ii = i : Inc(rj), Ii = i : DecJump(rj , s) with lj > 0, and Ii = i :
DecJump(rj , s) with lj = 0.

As a corollary of the theorem above, we have that if R is a RAM, given
one of its possible configurations (Ii, r1 = l1, · · · , rm = lm) and a solution S ∈
[[(Ii, r1 = l1, · · · , rm = lm)]], there exists a solution containing the molecule Ihalt



in |LTG(ER, S)| if and only if the computation starting from the configuration
(Ii, r1 = l1, · · · , rm = lm) halts. As the halting problem is undecidable for RAMs,
we have that in the BGF the problem of deciding whether a certain molecule
could be produced in a given system is undecidable. We have already observed
that, on the contrary, this property is decidable for the process algebra CGF.

5 Conclusion

Turing-powerful mechanisms are not a requirement for building sophisticated
nano-machines. Yet, the existence of Turing-powerful mechanisms guarantees a
certain level of generality and flexibility in constructing machinery of any desired
complexity, and provides evolution with adaptable toolkits to build upon. This
paper highlights the fact that nature widely employs Turing-powerful mecha-
nisms at the molecular level, and that it does so in a finitary combinatorial
way that is qualitatively different from the common notion of chemical reactions
between simple species. We have shown that the biochemical operations of com-
plexation and decomplexation, formalized in a very basic form, are sufficient to
raise expressiveness to the level of Turing-completeness, while simple chemistry
(with finite descriptions) is not sufficient. In other words, finite programming
constructs that are Turing powerful can be found in biochemistry but not in
simple chemistry.

It is interesting to note that similar computational boundaries have been
proved also in the context of process calculi based on membrane interactions such
as endocytosis, exocytosis, fusion, and fission. In [1], Busi and Gorrieri prove
that a basic process calculus including endoctytosis and exocytosis is Turing
complete, while this is not the case when only fusion and fission are considered.
This because endocytosis allows for the nesting of membranes with an unbounded
depth, while this is not possible when only fission and fusion are considered. In
BGF, instead of using membrane nesting, we consider a more basic complexation
mechanism in order to generate structures with unbounded length.

The boundary of Turing-completeness gets even more interesting at the
quantitative, approximate, level. For instance, recent work by Liekens and Fer-
nando [10] shows how to approximate in discrete chemistry finite computations
of Register Machines with an error probability smaller than any given precision
δ > 0. Soloveichik et al. [17], besides proving that in discrete chemistry it is
not possible to precisely model any Turing powerful formalism (the result we
have used in Section 2 to motivate that CGF is not Turing complete), show also
how to approximate unbounded computations. A consequence of their results is
that it is always decidable whether a certain molecule could be produced in a
chemical system, while the question whether the system is likely to produce that
molecule is in general undecidable. This opens interesting questions about what
is actually decidable and what is undecidable in discrete chemistry. Some results
recently proved along this line of research can be found in [18].



References

1. N. Busi and R. Gorrieri. On the Computational Power of Brane Calculi. In
Transactions on Computational Systems Biology, volume 4220 of LNCS, pages 16–
43. Springer, 2006.

2. L. Cardelli. Artificial Biochemistry. In Proc. of Algorithmic Bioprocesses, volume
to appear of LNCS, 2008. Available at: http://lucacardelli.name.

3. L. Cardelli. On Process Rate Semantics. Theoretical Computer Science, in press,
2008. Available at http://dx.doi.org/10.1016/j.tcs.2007.11.012.

4. L. Cardelli and S. Pradalier. Where Membranes Meet Complexes. In Proc. of
Concurrent Models in Molecular Biology (BioConcur05), 2005.

5. A. Credi, M. Garavelli, C. Laneve, S. Pradalier, S. Silvi, and G. Zavattaro. Mod-
elization and Simulation of Nano Devices in nano-kappa Calculus. In Proc. of
Computational Methods in Systems Biology (CMSB07), volume 4695 of LNCS,
pages 168–183, 2007.

6. V. Danos, J. Feret, W. Fontana, and J. Krivine. Kappa Factory, 2007. Available
at: http://www.lix.polytechnique.fr/∼krivine/kappaFactory.html.

7. V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science,
325(1):69–110, 2004.

8. H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda. Using process diagrams for the
graphical representation of biological networks. Nature Biotechnolgy, 23:961–966,
2005.

9. K.W. Kohn, M.I. Aladjem, J.N. Weinstein, and Y. Pommier. Molecular interaction
maps of bioregulatory networks: a general rubric for systems biology. Molecular
biology of the cell, 17(1):1–13, 2006.

10. A.M.L. Liekens and C.T. Fernando. Turing complete catalytic particle computers.
In Proc. of 9th European Conference on Artificial Life (ECAL07), volume 4648 of
Lecture Notes in Computer Science, pages 1202–1211, 2007.

11. M.O. Magnasco. Chemical Kinetics is Turing Universal. Physical Review Letters,
78:1190–1193, 1997.

12. D.A. McQuarrie. Stochastic approach to chemical kinetics. Journal of Applied
Probability, 4:413–478, 1967.

13. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
14. M. L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Englewood

Cliffs, 1967.
15. C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Proc. of

Computational Methods in Systems Biology (CMSB04), volume 3082 of Lecture
Notes in Computer Science, pages 20–33, 2004.

16. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic
name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

17. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with Finite
Stochastic Chemical Reaction Networks. Natural Computing, in press, 2008. Avail-
able at http://dx.doi.org/10.1007/s11047-008-9067-y.

18. G. Zavattaro and L. Cardelli. Termination Problems in Chemical Kinetics, 2008.
Available at: http://lucacardelli.name.


